Дисциплина: Теория вероятностей и математическая статистика
Дополнительная информация:4-е изд., эл.
Перевод 4-го издания популярного учебника по теории вероятностей и ее приложениям, написанного известными американскими математиками из Станфордского университета. Четвертое издание дополнено двумя новыми главами, посвященными финансовой математике.
Для студентов, преподавателей, исследователей и практиков в экономике, психологии, социологии, медицине и в других областях, где используются статистические методы и теория вероятностей.
Предисловие к четвертому изданию | 5 |
Предисловие к третьему изданию | 6 |
Предисловие ко второму изданию | 6 |
Предисловие к первому изданию | 7 |
О введении в финансовую математику | 10 |
Глава 1. Теория множеств | 11 |
1.1. Множества выборочного пространства | 11 |
1.2. Операции над множествами | 14 |
1.3. Разные формулы | 18 |
1.4. Индикатор | 25 |
Задачи | 29 |
Глава 2. Вероятность | 31 |
2.1. Подсчет вероятностей | 31 |
2.2. Определение и примеры | 35 |
2.3. Следствия аксиом | 43 |
2.4. Независимые события | 48 |
2.5. Арифметическая плотность | 53 |
Задачи | 56 |
Глава 3. Комбинаторика | 60 |
3.1. Основное правило | 60 |
3.2. Модели случайного выбора | 65 |
3.3. Модели размещения. Биномиальные коэффициенты | 71 |
3.4. Как решать комбинаторные задачи | 78 |
Задачи | 87 |
Глава 4. Случайные величины | 92 |
4.1. Что такое случайная величина? | 92 |
4.2. Как образуются случайные величины? | 96 |
4.3. Распределение и математическое ожидание | 103 |
4.4. Целочисленные случайные величины | 110 |
4.5. Случайные величины, имеющие плотности | 115 |
4.6. Общий случай | 127 |
Задачи | 132 |
Приложение 1. Сигма-алгебры и общее определение случайной величины | 138 |
Глава 5. Условные вероятности и независимость | 140 |
5.1. Примеры вычисления условных вероятностей | 140 |
5.2. Основные формулы | 146 |
5.3. Последовательный выбор | 156 |
5.4. Урновая схема Пойа | 161 |
5.5. Независимость и связанные с ней понятия | 167 |
5.6. Генетические модели | 180 |
Задачи | 185 |
Глава 6. Среднее, дисперсия и преобразования случайных величин | 192 |
6.1. Основные свойства математического ожидания | 192 |
6.2. Случай, когда есть плотность | 197 |
6.3. Теоремы умножения. Дисперсия и ковариация | 202 |
6.4. Полиномиальное распределение | 209 |
6.5. Производящая функция и другие преобразования | 216 |
Задачи | 225 |
Глава 7. Пуассоновское и нормальное распределения | 233 |
7.1. Модели, в которых используется пуассоновское распределение | 233 |
7.2. Пуассоновский процесс | 241 |
7.3. От биномиального закона к нормальному | 254 |
7.4. Нормальное распределение | 261 |
7.5. Центральная предельная теорема | 265 |
7.6. Закон больших чисел | 273 |
Задачи | 281 |
Приложение 2. Формула Стирлинга и теорема МуавраЛапласа | 285 |
Глава 8. От случайных блужданий к цепям Маркова | 288 |
8.1. Задача о бродяге и задача о разорении игрока | 288 |
8.2. Предельные схемы | 295 |
8.3. Переходные вероятности | 302 |
8.4. Структура цепей Маркова | 312 |
8.5. Дальнейшее развитие | 321 |
8.6. Стационарное распределение | 329 |
8.7. Вероятности поглощения | 343 |
Задачи | 355 |
Приложение 3. Мартингалы | 365 |
Глава 9. Инвестирование на основе средних и дисперсий | 370 |
9.1. Финансовый букварь | 370 |
9.2. Доходность активов и риск | 372 |
9.3. Портфель инвестора | 377 |
9.4. Диверсификация | 378 |
9.5. Оптимизация на основе средних и дисперсий | 380 |
9.6. Распределения доходности активов | 390 |
9.7. Устойчивые распределения | 392 |
Задачи | 397 |
Приложение 4. Распределение Парето и устойчивые законы | 399 |
Глава 10. Расчет цены опциона | 406 |
10.1. Основные понятия, относящиеся к опционам | 406 |
10.2. Цена опциона при отсутствии арбитража: 1-периодная модель | 416 |
10.3. Цена опциона при отсутствии арбитража: N-периодная модель | 423 |
10.4. Фундаментальные теоремы оценивания опционов | 429 |
Задачи | 430 |
Ответы к задачам | 432 |
Литература | 444 |
Функция стандартного нормального распределения | 446 |
Предметный указатель | 448 |
Отзывы: нет |
© 2001–2022, Издательство «Директ-Медиа» тел.: 8-800-333-68-45 (звонок бесплатный), +7 (495) 258-90-28 manager@directmedia.ru